175 | 0 | 4 |
下载次数 | 被引频次 | 阅读次数 |
为解决我国东北高寒地区低温环境下玉米秸秆不易降解的难题,利用平板快速筛选方法结合低温发酵培养对耐低温生长的45个真菌菌株进行筛选,获得能够在低温条件下同时产生漆酶、纤维素酶、半纤维素酶及过氧化物酶等多种木质素纤维素酶的6株真菌菌株,并对该6株菌株进行玉米秸秆低温腐解效果的评价,分别在处理10,20,30,40,50 d时测定其产生的木质素纤维素酶活性及其玉米秸秆中各组分的降解率。结果发现:在20℃条件下进行液体发酵培养10 d后,这些菌株产生的漆酶活性可达7.47 U/mL(L2431)和7.2 U/mL(X1957),纤维素酶活可达239 U/mL (L743)和167 U/mL(L1675),半纤维素酶活可达179.3 U/mL(YF410)、120.0 U/mL (H382)和113.3 U/mL (L2431),过氧化物酶活可达为25.1 U/mL(L2431-3)、24.9 U/mL(2423)和15.9 U/mL(L2419)。6种菌株在低温条件下产生各种木质素纤维素酶活性达到最大值的时间不完全一致,且对玉米秸秆各组分的降解率存在着显著的差异(P<0.05),但对玉米秸秆组分的总降解率均随着时间的延长而增加,在处理50 d后的木质素降解率为18.2%~25.1%,纤维素降解率为24.1%~44.6%,半纤维素降解率为19.3%~26.3%,玉米秸秆总降解率为61.8%~87.0%。本研究筛选到在低温环境下生长较快且产酶能力较强和高效腐解玉米秸秆的真菌菌株,对我国东北寒冷地区玉米秸秆还田措施具有积极的推动作用和应用前景。
Abstract:Forty-five fungal strains were screened to show the activity of laccase, cellulase,hemicellulose or peroxidase by a plate rapid screening method combined with fermentation culture at low temperatures. Within these strains, the high enzyme activity reached up to 7.47 U/mL(L2431) and 7.2 U/mL(X1957) for laccase, 239 U/mL(L743) and 167 U/mL(L1675) for cellulase, 179.3 U/mL(YF410), 120.0 U/mL(H382) and 113.3 U/mL(L2431-3) for hemicellulose, and 25.1 U/mL(L2431),24.9 U/mL(2423) and 15.9 U/mL(L2419) for peroxidase respectively under the liquid fermentation cultured at 20 ℃ in 10 days. After that, six strains were selected furthermore for the decomposition test of corn straws at low temperatures. Enzyme activities and degradation rates of corn straw components were measured in 10, 20, 30, 40 and 50 days, respectively, indicating that the time needed by the enzymes to reveal their maximum activities at the low temperature varied among strains. Although there existed significant differences in the degradation rates for each component of corn straws among the above strains, the total degradation rates of corn straws increased as time proceeded for all the strains. The degradation rates of lignin, cellulose and hemicellulose in corn straws were 18.2%-25.1%, 24.1%-44.6% and 19.3%-26.3%, respectively while the total degradation rates of corn straws were 61.8%-87.0% in 50 days. The above results demonstrated clearly that the fungal strains screened at the present study were able to adapt to the low-temperature environments without the loss of their high enzymatic activity and high efficiency in decomposition of corn straws, providing strong and positive evidence for future promotion and application of straw returning measures in the cold areas of northeast China.
[1]高忠坡,倪嘉波,李宁宁.我国农作物秸秆资源量及利用问题研究[J].农机化研究,2022, 44(4):16-25.
[2]李岫峰,王奕晟,孙旸,等.我国玉米秸秆资源现状及其饲料化研究进展[J].饲料研究,2022, 45(18):129-132.
[3]仇焕广,李新海,余嘉玲.中国玉米产业:发展趋势与政策建议[J].农业经济问题,2021,(7):4-16.
[4]火惠霞.循环经济视角下的农作物秸秆综合利用[J].山西农经,2021(14):137-138.
[5]姜延,李思达,马秀兰,等.东北黑土区农业废弃物资源化利用研究进展[J].吉林农业大学学报,2022,44(6):706-716.
[6] Singh G, Gupta M K, Chaurasiya S, et al. Rice straw burning:A review on its global prevalence and the sustainable alternatives for its effective mitigation[J]. Environmental Science and Pollution Research,2021,28(25):32125-32155.
[7]田国成,王钰,孙路,等.秸秆焚烧对土壤有机质和氮磷钾含量的影响[J].生态学报,2016, 36(2):387-393.
[8] Wasoontharawat M, Jantama S S, Kanchanatawee S, et al.Effect of physicochemical pre-treatment of rice straw on its digestibility by Clostridium cellulolyticum[J]. Bioprocess and Biosystems Engineering, 2016, 39(11):1775-1784.
[9]王巧玉.秸秆的物理化学加工及应用[J].内蒙古石油化工,2012, 38(1):14-15.
[10] Maurya D P, Singla A, Negi S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol[J]. Biotechology, 2015,5(5):597-609.
[11] Pielhop T, Amgarten J, Rohr P V, et al. Steam explosion pretreatment of softwood:The effect of the explosive decompression on enzymatic digestibility[J]. Biotechnology for Biofuels, 2016, 9(1):152.
[12] J?nsson L J, Martín C. Pretreatment of lignocellulose:Formation of inhibitory by-products and strategies for minimizing their effects[J]. Bioresource Technology, 2016,199:103-112.
[13]梁俊,崔风云,孟亮,等.预处理对稻草碱法蒸煮及纸浆性能的影响[J].造纸科学与技术,2022,41(2):24-28.
[14]凌明亮,黄仁术,黄继宝.不同处理的秸秆对大别山黄牛后期集中肥育的影响[J].黄牛杂志,2004(6):9-11.
[15] Mo F, Zhu Y, Wang Z Y, et al. Polyethylene film mulching enhances the microbial carbon-use efficiency, physical and chemical protection of straw-derived carbon in an entisol of the loess plateau[J]. Science of the Total Environment,2021, 792:148357.
[16]邵帅,王玲玲,林剑,等.产纤维素酶真菌分离及高效菌株筛选[J].河南农业科学,2020, 49(4):55-61.
[17]朱兴华.产漆酶细菌的分离鉴定及其漆酶活性测定[J].佳木斯职业学院学报,2018(11):388-389.
[18]王伟,郑大浩,杨超博,等.高效纤维素分解菌的分离及秸秆降解生物效应[J].中国农业科技导报,2019, 21(8):36-46.
[19]王仁耀,王娟,李德茂,等.微生物降解秸秆的研究进展[J].应用化工,2022,51(12):3648-3651.
[20]黄亚丽,黄媛媛,马慧媛,等.低温秸秆降解真菌的筛选及在秸秆还田中的应用[J].中国农学通报,2020, 36(21):53-60.
[21]李鹤,张恒芳,秦治家,等.低温秸秆降解菌的研究进展[J].中国农学通报,2014, 30(33):116-119.
[22]宋自力,张伟,廖头根,等.血红密孔菌高产漆酶菌株的筛选及其对烟梗的生物降解[J].菌物学报,2019,38(3):381-392.
[23]王宜磊,朱陶,邓振旭.愈创木酚法快速筛选漆酶产生菌[J].生物技术,2007(2):40-42.
[24] Cami L F, Sonia C, Cristiane S F. Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains[J]. Enzyme Research, 2012, 2012:793708.
[25]毕鑫.白腐菌木素过氧化物酶的研究[D].天津:天津科技大学,2003.
[26]李建树,孙丽坤,韩向敏,等.高温纤维素降解微生物的筛选、鉴定及其酶活力测定[J].甘肃农业大学学报,2020,55(3):29-37.
[27]赵龙妹,张兰,曹慧,等.土壤中产木聚糖酶菌株的筛选及发酵条件优化[J].微生物学通报,2021,48(10):3506-3519.
[28]王伟玲,王展,王晶英.植物过氧化物酶活性测定方法优化[J].实验室研究与探索,2010, 29(4):21-23.
[29]王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素和木素的定量分析程序[J].微生物学通报,1987(2):81-84.
[30]赵懿,杜建军,张振华,等.秸秆还田方式对土壤有机质积累与转化影响的研究进展[J].江苏农业学报,2021,37(6):1614-1622.
[31]王美琦,刘银双,黄亚丽,等.秸秆还田对土壤微生态环境影响的研究进展[J].微生物学通报,2022,49(2):807-816.
[32]雷蕾,郭凤钦,许茹,等.玉米秸秆改土对土壤性质及越橘生长和光合特性的影响[J].吉林农业大学学报,2022,44(4):407-413.
[33]宋罗娜,窦森,黄莹.不同秸秆还田方式对土壤腐殖质组成的影响[J].吉林农业大学学报,2021,43(5):574-580.
[34]王嘉豪,李廷亮,吕卓呈,等.秸秆还田对土壤肥力特征影响的研究进展[J].江西农业学报,2022,34(2):108-114.
[35]穆春雷,武晓森,李术娜,等.低温产纤维素酶菌株的筛选、鉴定及纤维素酶学性质[J].微生物学通报,2013,40(7):1193-1201.
[36]曹慧,任世威,张腾月,等.青藏高原低温纤维素降解菌的筛选与酶学特性[J].饲料工业,2021,42(8):36-41.
[37]冯欣欣,李凤兰,徐永清,等.新疆寒冷地区腐木中产纤维素酶菌株的筛选与低温产酶特性[J].浙江农业学报,2021,33(8):1468-1476.
[38]徐丽萍,姜喆,葛英亮,等.利用Illumina高通量测序技术筛选低温降解玉米秸秆真菌[J].食品工业科技,2020,41(20):99-103.
[39]赵旭,王文丽,李娟.玉米秸秆低温降解菌的分离筛选及鉴定[J].土壤与作物,2017,6(3):192-198.
[40]董雪丽,季静,张松皓,等.一株耐低温纤维素降解菌的发酵条件优化和秸秆降解研究[J].农业生物技术学报,2022,30(5):978-989.
[41]张芳芳,张桐,戴丹,等.高效木质素降解菌的筛选及其对玉米秸秆的降解效果[J].菌物学报,2021,40(7):1869-1880.
基本信息:
DOI:10.13341/j.jfr.2023.1612
中图分类号:S141.4;S182
引用信息:
[1]杨会敏,李伟,汪世华等.高效腐解玉米秸秆耐低温真菌菌株的筛选及评价[J].菌物研究,2025,23(03):211-222.DOI:10.13341/j.jfr.2023.1612.
基金信息:
中国科学院A类战略性先导科技专项(XDA28030400)