nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2021, 03, v.19 197-206
根癌农杆菌介导的菌根真菌遗传转化研究进展
基金项目(Foundation): 兰州大学中央高校基本科研业务费专项资金资助项目(lzujbky-2019-ct01); 国家自然科学青年科学基金项目(31901279); 甘肃省自然科学基金项目(20JR5RA276)
邮箱(Email): zf@lzu.edu.cn;
DOI: 10.13341/j.jfr.2020.1411
摘要:

菌根真菌与寄主植物之间有着互利共生的关系,相互作用下会形成菌根结构。为了从基因水平上进行共生关系的研究,需要构建高效稳定的遗传转化体系。相比较传统的真菌遗传转化方法,根癌农杆菌Agrobacterium tumefaciens介导的转化方法具有适用范围广、转化效率高等特点,因此成为菌根真菌最理想的转化方法之一。通过探究影响根癌农杆菌遗传转化效率的因素以及所用的RNA干扰和过表达的克隆载体构建,总结出农杆菌转化外生菌根真菌的最适方案。在基因功能研究方面,归纳了已有的一些利用根癌农杆菌对不同类型菌根真菌进行遗传改造的实验结果,对兰科菌根真菌、杜鹃花菌根真菌、从枝菌根真菌以及外生菌根真菌的基因功能研究进展进行总结。为菌根进行分子水平和遗传学方面的深入研究提供背景资料。

Abstract:

The mutualism between mycorrhizal fungi and host plant would induce to form the mycorrhizae.For the research on symbiotic relationship at geneticlevel,we need to build the high efficient and stable genetic transformation system.Comparing with the traditional genetic transformation methods of fungi,Agrobacterium tumefaciens-mediated transformation is one of the most ideal way to produce transformants which has a wide range and high efficiency.In this review we explored the effects of the efficiency of A.tumefaciens-mediated transformation in various conditions and the construction of cloning vector about RNA interference and overexpression summarized the optimum method of A.tumefaciens transforming the ectomycorrhizal fungi.In the field of genetic function,generalized some results of different types of mycorrhizal fungi using the A.tumefaciens-mediated transformation to get the genetic modification and summarize the research progress of gene function about orchid mycorrhizal fungi,ericoid mycorrhizal fungi,arbuscular mycorrhizal fungi and ectomycorrhizal fungi.Therefore,it provided the background for further studied of mycorrhizae using molecular methods.

参考文献

[1] Read D J,Leake J R,PerezMoreno J. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes[J]. Canadian Journal of Botany,2004,82(8):12431263.

[2] Smith S E,Read D J. Mycorrhizal symbiosis[J]. Quarterly Re-view of Biology,2008,3(3):273281.

[3] Toussaint J P,StArnaud M,Charest C. Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck&Smith and Ri TDNA roots of Daucus carota L. in an in vitro compartmented system[J]. Ca-nadian Journal of Microbiology,2004,50(4):251260.

[4] Jin H,Pfeffer P E,Douds D D,et al. The uptake,metabo-lism,transport and transfer of nitrogen in an arbuscular mycor-rhizal symbiosis[J]. New Phytologist, 2005, 168(3):687696.

[5] Jargeat P,Rekangalt D,Verner M C,et al. Characterisation and expression analysis of a nitrate transporter and nitrite re-ductase genes,two members of a gene cluster for nitrate assim-ilation from the symbiotic basidiomycete Hebeloma cylindrosporum[J]. Current Genetics,2003,43(3):199205.

[6] Peng L Y,Li Y,Huang J G,et al. Soil phosphorus mobiliza-tion and utilization by Suillus isolates and Suillusmycorrhized pine plants[J]. Forest Ecology and Management,2021,483:118772.

[7] Roth R,Paszkowski U. Plant carbon nourishment of arbuscu-lar mycorrhizal fungi[J]. Current Opinion in Plant Biology,2017,39:5056.

[8] Wang W X,Shi J C,Xie Q J,et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis[J]. Molecular Plant,2017,10(9):11471158.

[9] Martin F M,Kohler A,Murat C,et al. Unearthing the roots of ectomycorrhizal symbioses[J]. Nature Reviews Microbiology,2016,14(12):760773.

[10]梁宇,郭良栋,马克平.菌根真菌在生态系统中的作用[J].植物生态学报,2002,26(6):739745.

[11] Tedersoo L,Bahram M,Zobel M. How mycorrhizal associa-tions drive plant population and community biology[J]. Sci-ence,2020,367(6480):eaba1223.

[12] Combier J P,Melayah D,Raffier C,et al. Nonmycorrhizal(myc)mutants of Hebeloma cylindrosporum obtained through insertional mutagenesis[J]. Molecular PlantMicrobe Interac-tions:MPMI,2004,17(9):10291038.

[13] Kuo C Y,Huang C T. A reliable transformation method and heterologous expression ofβ-glucuronidase in Lentinula edodes[J]. Journal of Microbiological Methods,2008,72(2):111115.

[14] Sunagawa M,Murata H,Miyazaki Y,et al. Transformation of the mycorrhizal basidiomycetes,Suillus grevillei and S. bovinus,by particle bombardment[J]. Bioscience,Biotechnol-ogy,and Biochemistry,2007,71(1):4750.

[15] Noh W,Kim S W,DongWon B,et al. Genetic introduction of foreign genes to Pleurotus eryngii by restriction enzymemediated integration[J]. The Journal of Microbiology,2010,48(2):253256.

[16] Bourras S,Rouxel T,Meyer M. Agrobacterium tumefaciens gene transfer:how a plant pathogen hacks the nuclei of plant and nonplant organisms[J]. Phytopathology,2015,105(10):12881301.

[17] Chan M T,Lee T M,Chang H H. Transformation of indica rice(Oryza sativa L.)mediated by Agrobacterium tumefaciens[J]. Plant and Cell Physiology,1992,33(5):577583.

[18] de Groot M J A,Bundock P,Hooykaas P J J,et al. Agrobacterium tumefaciensmediated transformation of filamentous fungi[J]. Nature Biotechnology,1998,16(9):839842.

[19] Kunik T,Tzfira T,Kapulnik Y,et al. Genetic transforma-tion of HeLa cells by Agrobacterium[J]. Proceedings of the National Academy of Sciences of the United States of Ameri-ca,2001,98(4):18711876.

[20] Nyilasi I,ács K,Papp T,et al. Agrobacterium tumefaciensmediated transformation of Mucor circinelloides[J]. Folia Mi-crobiologica,2005,50(5):415420.

[21] Nizam S,Verma S,Singh K,et al. High reliability transfor-mation of the wheat pathogen Bipolaris sorokiniana using Agrobacterium tumefaciens[J]. Journal of Microbiological Methods,2012,88(3):386392.

[22] Yu H Y. Development of a transformation method for the nematophagous fungus Dactylellina cionopaga[J]. African Journal of Biotechnology,2012,11(14):33703378.

[23] Bundock P,den DulkRas A,Beijersbergen A,et al. Transkingdom TDNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae[J]. The EMBO Journal,1995,14(13):32063214.

[24] Pardo A G,Hanif M,Raudaskoski M,et al. Genetic trans-formation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens[J]. Mycological Research,2002,106(2):132137.

[25] Martino E,Murat C,Vallino M,et al. Imaging mycorrhizal fungal transformants that express EGFP during ericoid endo-symbiosis[J]. Current Genetics,2007,52(2):6575.

[26] Hanif M,Pardo A,Gorfer M,et al. TDNA transfer and inte-gration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker[J]. Current Genetics,2002,41(3):183188.

[27] Grimaldi B,Raaf M A,Filetici P,et al. Agrobacteriumme-diated gene transfer and enhanced green fluorescent protein visualization in the mycorrhizal ascomycete Tuber borchii:a first step towards truffle genetics[J]. Current Genetics,2005,48(1):6974.

[28] Pardo A G,Kemppainen M,Valdemoros D,et al. TDNA transfer from Agrobacterium tumefaciens to the ectomycorrhi-zal fungus Pisolithus microcarpus[J]. Revista Argentina De Microbiologia,2005,37(2):6972.

[29] Murata H,de Sunagawa M,Igasaki T,et al. Agrobacteriummediated transformation of the ectomycorrhizal basidiomy-cete Tricholoma matsutake that produces commercially valu-able fruit bodies,matsutake[J]. Mycoscience,2006,47(4):228231.

[30] Zubieta M P,da Silva Coelho I,Queiroz M V,et al. Agrobacterium tumefaciensmediated genetic transformation of the ectomycorrhizal fungus Laccaria laccata[J]. Annals of Micro-biology,2014,64(4):18751878.

[31] Satish L,Kamle M,Keren G,et al. Agrobacterium tumefaciensmediated genetic transformation of the ectendomycor-rhizal fungus Terfezia boudieri[J]. Genes,2020,11(11):1293.

[32] FloresMireles A L,Eberhard A,Winans S C. Agrobacterium tumefaciens can obtain sulpfur from an opine that is syn-thesized by octopine synthase using Smethylmethionine as a substrate[J]. Molecular Microbiology, 2012, 84(5):845856.

[33] Vladimirov I A,Matveeva T V,Lutova L A. Opine biosyn-thesis and catabolism genes of Agrobacterium tumefaciens and Agrobacterium rhizogenes[J]. Russian Journal of Genet-ics,2015,51(2):121129.

[34] Brenna A,Montanini B,Muggiano E,et al. Integrative gene transfer in the truffle Tuber borchii by Agrobacterium tumefaciensmediated transformation[J]. AMB Express,2014,4(1):112.

[35] Ngari C,Combier J P,DoréJ,et al. The dominant Hc.Sdh(R)carboxinresistance gene of the ectomycorrhizal fungus Hebeloma cylindrosporum as a selectable marker for transfor-mation[J]. Current Genetics,2009,55(2):223231.

[36] Kemppainen M,Circosta A,Tagu D,et al. Agrobacteriummediated transformation of the ectomycorrhizal symbiont Laccaria bicolor S238N[J]. Mycorrhiza,2005,16(1):1922.

[37] Tang G R,Li Q,Xing S H,et al. The LsrB protein is re-quired for Agrobacterium tumefaciens interaction with host plants[J]. Molecular PlantMicrobe Interactions,2018,31(9):951961.

[38] Burns C,Leach K M,Elliott T J,et al. Evaluation of Agrobacteriummediated transformation of Agaricus bisporus using a range of promoters linked to hygromycin resistance[J]. Mo-lecular Biotechnology,2006,32(2):129138.

[39] Chen X,Stone M,Schlagnhaufer C,et al. A Fruiting body tissue method for efficient Agrobacteriummediated transfor-mation of Agaricus bisporus[J]. Applied and Environmental Microbiology,2000,66(10):45104513.

[40] Combier J P,Melayah D,Raffier C,et al. Agrobacterium tumefaciensmediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum[J]. FEMS Microbiology Letters,2003,220(1):141148.

[41] Meyer V,Mueller D,Strowig T,et al. Comparison of differ-ent transformation methods for Aspergillus giganteus[J]. Cur-rent Genetics,2003,43(5):371377.

[42]乔燕楠,林星雨,高雅,等.根癌农杆菌介导的双孢蘑菇转基因体系的建立[J].食用菌学报,2021,28(1):4854.

[43] Shaw C H,Waston M D,Carter G H,et al. The right hand copy of the nopaline Tiplasmid 25 bp repeat is required for tumour formation[J]. Nucleic Acids Research,1984,12(15):60316041.

[44] Winans S C. Twoway chemical signaling in Agrobacteriumplant interactions[J]. Microbiological Reviews,1992,56(1):1231.

[45]邓艺,曾炳山,赵思东,等.乙酰丁香酮在农杆菌介导的遗传转化中的作用机制及应用[J].安徽农业科学,2010,38(5):22292232.

[46] Michielse C B,Hooykaas P J J J,Hondel C A M J J,et al.Agrobacteriummediated transformation as a tool for function-al genomics in fungi[J]. Current Genetics,2005,48(1):117.

[47] Idnurm A,Bailey A M,Cairns T C,et al. A silver bullet in a golden age of functional genomics:the impact of Agrobacteriummediated transformation of fungi[J]. Fungal Biology and Biotechnology,2017,4(1):128.

[48] Coelho I D S,de Queiroz M V,Costa M D,et al. Production and regeneration of protoplasts from orchid Mycorrhizal Fun-gi Epulorhiza repens and Ceratorhiza sp.[J]. Brazilian Ar-chives of Biology and Technology,2010,53(1):153159.

[49]谢贤安.丛枝菌根共生体磷信号转运受体的发现及其分子机制的研究[D].武汉:华中农业大学,2013.

[50]李俊香,古勤生.根癌农杆菌介导的真菌遗传转化研究进展[J].江苏农业科学,2020,48(3):4349.

[51] Kemppainen M J,Pardo A G. Gene knockdown by ihpRNAtriggering in the ectomycorrhizal basidiomycete fungus Laccaria bicolor[J]. Bioengineered Bugs,2010,1(5):354358.

[52] Nakayashiki H,Hanada S,Quoc N B,et al. RNA silencing as a tool for exploring gene function in ascomycete fungi[J].Fungal Genetics and Biology,2005,42(4):275283.

[53] Janus D,Hoff B,Hofmann E,et al. An efficient fungal RNAsilencing system using the DsRed reporter gene[J]. Ap-plied and Environmental Microbiology, 2007, 73(3):962970.

[54] Moriwaki A,Ueno M,Arase S,et al. RNAmediated gene si-lencing in the phytopathogenic fungus Bipolaris oryzae[J].FEMS Microbiology Letters,2007,269(1):8589.

[55] Kemppainen M J,Pardo A G. pHg/pSILBAγvector system for efficient gene silencing in homobasidiomycetes:optimiza-tion of ihpRNAtriggering in the mycorrhizal fungus Laccaria bicolor[J]. Microbial Biotechnology, 2010, 3(2):178200.

[56] Kemppainen M,Chowdhury J,LundbergFelten J,et al.Fluorescent protein expression in the ectomycorrhizal fungus Laccaria bicolor:a plasmid toolkit for easy use of fluorescent markers in basidiomycetes[J]. Current Genetics,2020,66(4):791811.

[57] Burns C,Gregory K E,Kirby M,et al. Efficient GFP expres-sion in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns[J]. Fungal Genetics and Biology,2005,42(3):191199.

[58] Ford K L,Baumgartner K,Henricot B,et al. A native pro-moter and inclusion of an intron is necessary for efficient ex-pression of GFP or mRFP in Armillaria mellea[J]. Scientific Reports,2016,6:29226.

[59] Jackson R J,Hellen C U T,Pestova T V. The mechanism of eukaryotic translation initiation and principles of its regula-tion[J]. Nature Reviews Molecular Cell Biology,2010,11(2):113127.

[60] Fochi V,Falla N,Girlanda M,et al. Cellspecific expres-sion of plant nutrient transporter genes in orchid mycorrhizae[J]. Plant Science,2017,263:3945.

[61] Cameron D D,Leake J R,Read D J. Mutualistic mycorrhiza in orchids:evidence from plantfungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens[J]. New Phytologist,2006,171(2):405416.

[62]魏明,童秦怡,柴瑞娟,等.兰科菌根真菌对干旱胁迫下铁皮石斛生长和抗氧化能力及相关基因表达的影响[J].西北植物学报,2018,38(10):19051912.

[63]陈连庆,王小明,裴致达.石斛气生的兰科菌根组织结构及其对御旱研究[J].生态环境学报,2010,19(1):160164.

[64] Ye W,Jiang J L,Lin Y L. et al. Colonisation of Oncidium or-chid roots by the endophyte Piriformospora indica restricts Erwinia chrysanthemi infection,stimulates accumulation of NBSLRR resistance gene transcripts and represses their tar-geting microRNAs in leaves[J]. BMC Plant Biology,2019,19(1):601.

[65] Casarrubia S,Daghino S,Kohler A,et al. The hydrophobinlike OmSSP1 may be an effector in the ericoid mycorrhizal symbiosis[J]. Frontiers in Plant Science,2018,9:546.

[66]薛英龙,李春越,王苁蓉,等.丛枝菌根真菌促进植物摄取土壤磷的作用机制[J].水土保持学报,2019,33(6):1020.

[67] de Fátima Pedroso D,Barbosa M V,dos Santos J V,et al.Arbuscular mycorrhizal fungi favor the initial growth of Acacia mangium,Sorghum bicolor,and Urochloa brizantha in soil contaminated with Zn,Cu,Pb,and Cd[J]. Bulletin of Environmental Contamination and Toxicology,2018,101(3):386391.

[68] Zhang Y C,Wang P,Wu Q H,et al. Arbuscular mycorrhi-zas improve plant growth and soil structure in trifoliate or-ange under salt stress[J]. Archives of Agronomy and Soil Sci-ence,2017,63(4):491500.

[69] Carlsen S C K,Understrup A,Fomsgaard I S,et al. Flavo-noids in roots of white clover:interaction of arbuscular my-corrhizal fungi and a pathogenic fungus[J]. Plant and Soil,2008,302(1/2):3343.

[70] Itoo Z A,Reshi Z A. Effect of different nitrogen and carbon sources and concentrations on the mycelial growth of ectomy-corrhizal fungi under invitro conditions[J]. Scandinavian Journal of Forest Research,2014,29(7):619628.

[71] Garcia K,Haider M Z,Delteil A,et al. Promoterdependent expression of the fungal transporter HcPT1.1 under Pi short-age and its spatial localization in ectomycorrhiza[J]. Fungal Genetics and Biology,2013,58/59:5361.

[72] Xu H,Kemppainen M,El Kayal W,et al. Overexpression of Laccaria bicolor aquaporin JQ585595 alters root water trans-port properties in ectomycorrhizal white spruce(Picea glauca)seedlings[J]. New Phytologist,2015,205(2):757770.

[73] Plett J,Kemppainen M,Kale S D,et al. A secreted effector protein of Laccaria bicolor is required for symbiosis develop-ment[J]. Current Biology,2011,21(14):11971203.

[74] Pellegrin C,Daguerre Y,Ruytinx J,et al. Laccaria bicolor MiSSP8 is a smallsecreted protein decisive for the establish-ment of the ectomycorrhizal symbiosis[J]. Environmental Mi-crobiology,2019,21(10):37653779.

[75] Kang H,Chen X,Kemppainen M,et al. The small secreted effector protein MiSSP7.6 of Laccaria bicolor is required for the establishment of ectomycorrhizal symbiosis[J]. Environ-mental Microbiology,2020,22(4):14351446.

[76] Kemppainen M J,Pardo A G. LbNrt RNA silencing in the mycorrhizal symbiont Laccaria bicolor reveals a nitrateinde-pendent regulatory role for a eukaryotic NRT2type nitrate transporter[J]. Environmental Microbiology Reports,2013,5(3):353366.

[77] Kemppainen M,Duplessis S,Martin F,et al. RNA silenc-ing in the model mycorrhizal fungus Laccaria bicolor:gene knockdown of nitrate reductase results in inhibition of symbi-osis with Populus[J]. Environmental Microbiology,2009,11(7):18781896.

[78] Kemppainen M J,Alvarez Crespo M C,Pardo A G. fHANTAC genes of the ectomycorrhizal fungus Laccaria bicolor are not repressed by lglutamine allowing simultaneous utiliza-tion of nitrate and organic nitrogen sources[J]. Environmen-tal Microbiology Reports,2010,2(4):541553.

[79] NavarroRódenas A,Xu H,Kemppainen M,et al. Laccaria bicolor aquaporin LbAQP1 is required for Hartig net develop-ment in trembling aspen(Populus tremuloides)[J]. Plant,Cell&Environmental,2015,38(11):24752486.

[80] Zhang F,Anasontzis G E,Labourel A,et al. The ectomycor-rhizal basidiomycete Laccaria bicolor releases a secretedβ1,4 endoglucanase that plays a key role in symbiosis develop-ment[J]. New Phytologist,2018,220(4):13091321.

[81]李海波.陕北黄土高原生态治理技术中丛枝菌根真菌的应用研究[J].青海农林科技,2020(4):1416.

[82]江瑶,莫晓勇,邓海燕,等.巨桉人工林外生菌根真菌群落组成及多样性[J].西北林学院学报,2020,35(6):153159.

[83] Weidlich E W A,Mioto P T,Furtado A N M,et al. Using ectomycorrhizae to improve the restoration of neotropical coastal zones[J]. Restoration Ecology,2020,28(6):13241326.

[84] Wei X Y,Chen J J,Zhang C Y,et al. Ericoid mycorrhizal fungus enhances microcutting rooting of Rhododendron fortunei and subsequent growth[J]. Horticulture Research,2020,7(1):140.

[85] Segnitz R M,Russo S E,Davies S J,et al. Ectomycorrhizal fungi drive positive phylogenetic plantsoil feedbacks in a re-gionally dominant tropical plant family[J]. Ecology,2020,101(8):e03083.

[86] Aryal P,Meiners S,Carlsward B S. Ectomycorrhizae deter-mine chestnut seedling growth and drought response[J].Agroforestry Systems,2020:110.

[87] Courty P E,Walder F,Boller T,et al. Carbon and nitrogen metabolism in mycorrhizal networks and mycoheterotrophic plants of tropical forests:a stable isotope analysis[J]. Plant Physiology,2011,156(2):952961.

[88] Rog I,Rosenstock N P,K?rner C,et al. Share the wealth:trees with greater ectomycorrhizal species overlap share more carbon[J]. Molecular Ecology,2020,29(13):23212333.

[89] Gorzelak M A,Ellert B H,Tedersoo L. Mycorrhizas transfer carbon in a mature mixed forest[J]. Molecular Ecology,2020,29(13):23152317.

[90] Zeng X H,Ni Z,Diao H X,et al. Root Endophytic fungal community and carbon and nitrogen stable isotope patterns differ among Bletilla species(Orchidaceae)[J]. Journal of Fungi,2021,7(2):69.

[91] Patrick D J. Plant biostimulants:definition,concept,main categories and regulation[J]. Scientia Horitculturae,2015,196:314.

[92] MacLean A M,Bravo A,Harrison M J. Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbio-sis[J]. Plant Cell,2017,29(10):23192335.

[93] Müller K,Kubsch N,Marhan S,et al. Saprotrophic and ec-tomycorrhizal fungi contribute differentially to organic P mo-bilization in beechdominated forest ecosystems[J]. Frontiers in Forests and Global Change,2020,3:47.

[94] Szuba A,Marczak L,Ratajczak I. Metabolome adjustments in ectomycorrhizal Populus×canescens associated with strong promotion of plant growth by Paxillus involutus despite a very low root colonization rate[J]. Tree Physiology,2020,40(12):17261743.

[95] Liang M,Johnson D,Burslem D F R P,et al. Soil fungal networks maintain local dominance of ectomycorrhizal trees[J]. Nature Communications,2020,11:17.

[96] Sebastiana M,da Silva A B,Matos A R,et al. Ectomycorrhi-zal inoculation with Pisolithus tinctorius reduces stress in-duced by drought in cork oak[J]. Mycorrhiza,2018,28(3):247258.

[97] Li Y,Chen Z,He J Z,et al. Ectomycorrhizal fungi inocula-tion alleviates simulated acid rain effects on soil ammonia ox-idizers and denitrifiers in Masson pine forest[J]. Environ-mental Microbiology,2019,21(1):299313.

[98] Branco S,Gladieux P,Ellison C E,et al. Genetic isolation between two recently diverged populations of a symbiotic fun-gus[J]. Molecular Ecology,2015,24(11):27472758.

[99] Huang D,Wang Q,Zhang Z,et al. Silencing MdGH32/12in apple reduces drought resistance by regulating AM coloni-zation[J]. Horticulture Research,2021,8(1):84.

[100] de Oliveira I F,Simeone M L F,de Guimar?es C C,et al.Sorgoleone concentration influences mycorrhizal coloniza-tion in sorghum[J]. Mycorrhiza,2021,31(2):259264.

[101] Li Q,Yan L,Ye L,et al. Chinese black truffle(Tuber indicum)alters the ectomycorrhizosphere and endoectomyco-sphere microbiome and metabolic profiles of the host tree Quercus aliena[J]. Frontiers in Microbiology,2018.

[102] Szuba A,Marczak?,Ratajczak I,et al. Integrated pro-teomic and metabolomic analyses revealed molecular adjust-ments in Populus×canescens colonized with the ectomycor-rhizal fungus Paxillus involutus,which limited plant host growth[J]. Environmental Microbiology. 2020,22(9):37543771.

基本信息:

DOI:10.13341/j.jfr.2020.1411

中图分类号:Q943.2

引用信息:

[1]邹嵘,马嘉楠,张凤.根癌农杆菌介导的菌根真菌遗传转化研究进展[J].菌物研究,2021,19(03):197-206.DOI:10.13341/j.jfr.2020.1411.

基金信息:

兰州大学中央高校基本科研业务费专项资金资助项目(lzujbky-2019-ct01); 国家自然科学青年科学基金项目(31901279); 甘肃省自然科学基金项目(20JR5RA276)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文