nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.23 223-230
常压低温等离子体对羊肚菌栽培基质细菌群落的影响
基金项目(Foundation): 西安市科学技术局农业技术研发项目(21NYYF0041)
邮箱(Email): zxshen@mail.xjtu.edu.cn;
DOI: 10.13341/j.jfr.2023.1660
摘要:

为探究低温等离子体对羊肚菌栽培基质的灭菌效果,以羊肚菌栽培基质为研究对象,采用高通量测序技术,比较分析了低温储存、室温储存及低温等离子体处理后基质中细菌群落组成与多样性变化。结果显示,低温等离子体处理后细菌群落物种多样性、丰富度和均匀度均显著降低,最高下降幅度分别为32%,34%及9%。科水平上,处理后伯克氏菌科相对丰度升高。属水平上,处理后优势菌属为水杆菌属。等离子体对链霉菌属Streptomyces、黄单胞菌属Xanthomonas、苍白杆菌属Ochrobactrum、帕拉伯克霍尔德氏菌Paraburkholderia等多种致病菌的杀菌率均在99%以上。首次将常压低温等离子体技术应用于羊肚菌基质灭菌,可有效杀灭多种致病菌,在羊肚菌栽培基质的灭菌和保鲜方面具有良好的应用前景。

Abstract:

Cultivation substrate of Agaricus Morchella was used to investigate the sterilization effect of bacteria through the low-temperature plasma technology carried out at atmospheric pressure.High-throughput sequencing technology was performed to analyze the changes of bacterial community, such as composition and diversity in the substrate, before and after treatments of low-temperature and room-temperature as well as low-temperature plasma. Our results showed that the diversity, richness and evenness of bacterial community were significantly reduced after treatment by low-temperature plasma, with the largest decrement rate up to 32%, 34% and 9%,respectively. Among different families detected from the bacterial community, however, relative richness of Burkholderiaceae increased continuously after treatment while among the genera, the dominant bacterium was Aquabacterium after treatment. The bactericidal rate of low-temperature plasma treatment against a variety of pathogenic bacteria such as Streptomyces, Xanthomonas,Ochrobactrum, and Paraburkholderia was above 99%. This study, as the first time, applied the new technology by using the atmospheric low temperature plasma for substrate sterilization of Morchella,which could effectively kill a variety of pathogenic bacteria, thereafter, demonstrating a good example and prospects for the future applications of above technology to the effective sterilization and preservation of Morchella cultivation substrates.

参考文献

[1]戴玉成,杨祝良.中国药用真菌名录及部分名称的修订[J].菌物学报,2008, 27(6):801-824.

[2]杜习慧,赵琪,杨祝良.羊肚菌的多样性、演化历史及栽培研究进展[J].菌物学报,2014,33(2):183-197.

[3] Wu F, Zhou L W, Yang Z L, et al. Resource diversity of Chinese macrofungi:edible, medicinal and poisonous species[J]. Fungal Diversity, 2019, 98(1):1-76.

[4] Elmastas M, Isildak O, Turkekul I, et al. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms[J]. Journal of Food Composition and Analysis,2007, 20(3/4):337-345.

[5] Wong J Y, Chye F Y. Antioxidant properties of selected tropical wild edible mushrooms[J]. Journal of Food Composition and Analysis, 2009, 22(4):269-277.

[6]许瀛引,谢丽源,张志远,等.微酸性电解水和紫外光结合对采后六妹羊肚菌的保鲜作用[J].菌物学报,2021, 40(12):3332-3346.

[7]戴玉成.中国食药用真菌研究发展的新趋势——以《菌物学报》2000—2021年发表论文分析[J].菌物研究,2022,20(2):141-156.

[8]赵琪.我国羊肚菌产业发展现状、前景及建议[J].食药用菌,2018,26(3):148-151.

[9]曾昭镇,郑详品.三明市新材料栽培食用菌技术进展[J].武夷科学,2004, 20(1):203-208.

[10] Tan H, Kohler A, Miao R, et al. Multi-omic analyses of exogenous nutrient bag decomposition by the black morel Morchella importuna reveal sustained carbon acquisition and transferring[J]. Environ Microbiol, 2019, 21(10):3909-3926.

[11] Agun L, Ahmad N, Redzuan N, et al. Sterilization of oyster mushroom crop residue substrate by using cold plasma technology[J]. Materials Today:Proceedings, 2021, 39:903-906.

[12] Mishra R, Bhatia S, Pal R, et al. Cold plasma:Emerging as the new standard in food safety[J]. Research Inventory:International Journal of Engineering Science,2016, 6:15-20.

[13] Mandal R, Singh A, Pratap Singh A. Recent developments in cold plasma decontamination technology in the food industry[J]. Trends in Food Science&Technology, 2018, 80:93-103.

[14] Han J Y, Song W J, Kang J H, et al. Effect of cold atmospheric pressure plasma-activated water on the microbial safety of Korean rice cake[J]. LWT, 2020, 120:108918.

[15]陈芳艳,吴三女,宋莉,等.等离子体消毒灭菌的研究进展[J].中国消毒学杂志,2021,38(2):144-148.

[16]王秀茹,沈振兴,杨一鸣,等.常压低温等离子体对羊肚菌培养基质的杀菌效果及工艺优化[J].菌物学报,2023,42(6):1413-1422.

[17]方琼,曹建康,赵玉梅,等.冷等离子体对果蔬冷库微生物群落的影响[J].食品工业科技,2022, 43(3):128-136.

[18]陈梦娟,蒋立文,徐元昊,等.利用Illumina MiSeq测序分析手筑茯砖茶发酵及干燥阶段真菌群落多样性[J].食品科学,2020,41(2):126-132.

[19] Edgar R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10):996-998.

[20] Chao A, Chiu C H, Jost L.Topics in biodiversity and conservation[M]. Cham:Springer International Publishing AG,2016:141-172.

[21] Chao A, Bunge J. Estimating the number of species in a stochastic abundance model[J]. Biometrics, 2002, 58(3):531-539.

[22] Guo X L, Wan Y Q, Shakeel M, et al. Effect of mycorrhizal fungi inoculation on bacterial diversity, community structure and fruit yield of blueberry[J]. Rhizosphere, 2021, 19:100360.

[23]张博,石玉祥,张永英,等.噬菌体对肠杆菌科细菌的治疗作用研究[J].畜禽业,2021, 32(6):18, 20.

[24]徐晓琴.少动鞘脂单胞菌高产结冷胶的发酵条件及动力学研究[D].杭州:浙江大学,2011:1-2.

[25]耿雪韵.伯克霍尔德杆菌表面多糖抗原重复片段及其寡聚体的合成研究[D].济南:山东大学,2016:14.

[26]况卫刚.伯克氏菌属和葡萄座腔菌属植物病原菌DNA条形码及分子检测研究[D].北京:中国农业大学,2017:45-47.

[27]戴维丝·拉荣.沈定霞主译.医学重要真菌鉴定指南[M].第5版.北京:中华医学电子音像出版社,2016:111.

[28]龙海,李一农,李芳荣,等.植物病原菌黄单胞菌的分类研究进展[J].植物保护,2010,36(5):11-16.

[29]任培根,周培瑾.中度嗜盐菌的研究进展[J].微生物学报,2003, 43(3):427-431.

基本信息:

DOI:10.13341/j.jfr.2023.1660

中图分类号:S646.7

引用信息:

[1]贺雪峰,樊灏,周桂灵等.常压低温等离子体对羊肚菌栽培基质细菌群落的影响[J].菌物研究,2025,23(03):223-230.DOI:10.13341/j.jfr.2023.1660.

基金信息:

西安市科学技术局农业技术研发项目(21NYYF0041)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文