621 | 0 | 4 |
下载次数 | 被引频次 | 阅读次数 |
外生菌根食用菌(块菌Tuber spp.、松茸Tricholoma matsutake、乳菇Lactarius spp.、牛肝菌Boletus spp.和鸡油菌Cantharellus spp.等)的驯化栽培研究历经百年,虽取得了一定进展,但因遗传和生理特性的复杂性,商业化栽培仅在少数种类上取得成功。详细探讨了外生菌根真菌与寄主植物的关系、酶活性、菌丝培养、菌根合成以及菌根苗移栽后管理等方面的研究进展,旨在为进一步开展驯化栽培等研究提供参考。
Abstract:Domestication and cultivation of ectomycorrhizal edible fungi has been one of the hot topics that draws significant attentions. Over the past century, various progresses have been achieved on the artificial cultivation of truffle, matsutake, saffron milk caps, bolete and chanterelles. However,the unique genetic and physiological characteristics of ectomycorrhizal edible fungi have limited the success of its commercial cultivation to only a few species. This paper takes a look at the recent research development on characteristics, enzymatic activity, mycelial culture, mycorrhizal synthesis and post-transplant management of mycorrhizal fungi, with purposes to provide some valuable insights for future studies in this field.
[1] Brundrett M C, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity[J]. The New Phytologist, 2018, 220(4):1108-1115.
[2] Soudzilovskaia N A, van Bodegom P M, Terrer C, et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks[J]. Nature Communications, 2019, 10(1):5077.
[3] Steidinger B S, Crowther T W, Liang J, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses[J]. Nature, 2019, 569(7756):404-408.
[4] Hawkins H J, Cargill R I M, Van Nuland M E, et al. Mycorrhizal mycelium as a global carbon pool[J]. Current Biology,2023, 33(11):560-573.
[5]温祝桂,陈亚华.中国外生菌根真菌研究进展[J].生物技术通报,2013(2):22-30.
[6] Rinaldi A C, Comandini O, Kuyper T W. Ectomycorrhizal fungal diversity:separating the wheat from the chaff[J]. Fungal Diversity, 2008, 33:1-45.
[7] Sugiyama Y, Sato H. Determinants of host specificity in ectomycorrhizal fungi:a focus on host and fungal biogeography[J]. Fungal Ecology, 2024, 70:101350.
[8] Guerin-Laguette A. Successes and challenges in the sustainable cultivation of edible mycorrhizal fungi-furthering the dream[J]. Mycoscience, 2021, 62(1):10-28.
[9] Li Z, Wu S L, Liu Y J, et al. Plant biomass amendment regulates arbuscular mycorrhizal role in organic carbon and nitrogen sequestration in eco-engineered iron ore tailings[J]. Geoderma, 2022, 428:116178.
[10] Cairney J W G. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil[J]. Soil Biology and Biochemistry, 2012, 47:198-208.
[11] Hobbie E A, Ouimette A P, Schuur E A G, et al. Radiocarbon evidence for the mining of organic nitrogen from soil by mycorrhizal fungi[J]. Biogeochemistry, 2013, 114(1):381-389.
[12] N?sholm T, Persson J. Plant acquisition of organic nitrogen in boreal forests[J]. Physiologia Plantarum, 2001, 111(4):419-426.
[13] H?gberg M N, H?gberg P. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil[J]. The New Phytologist, 2002,154(3):791-795.
[14] Averill C, Hawkes C V. Ectomycorrhizal fungi slow soil carbon cycling[J]. Ecology Letters, 2016, 19(8):937-947.
[15] Cheeke T E, Phillips R P, Brzostek E R, et al. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function[J]. The New phytologist, 2016, 214(1):432.
[16] Eastwood D C, Floudas D, Binder M, et al. The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi[J]. Science, 2011, 333(6043):762-765.
[17] Lilleskov E A, Hobbie E A, Fahey T J. Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes[J]. The New phytologist, 2002, 154(1):219-231.
[18] Read D J, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance?[J]. The New Phytologist, 2003, 157(3):475-492.
[19] Drigo B, Anderson I C, Kannangara G S K, et al. Rapid incorporation of carbon from ectomycorrhizal mycelial necromass into soil fungal communities[J]. Soil Biology and Biochemistry, 2012, 49:4-10.
[20] B?deker I T M, Clemmensen K E, de Boer W, et al. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems[J]. The New Phytologist, 2014, 203(1):245-256.
[21] N?sholm T, Kielland K, Ganeteg U. Uptake of organic nitrogen by plants[J]. The New Phytologist, 2009, 182(1):31-48.
[22]高悦,吴小芹,孙民琴.马尾松不同菌根苗对氮磷钾的吸收利用[J].南京林业大学学报(自然科学版),2009, 33(4):77-80.
[23] Otsing E, Tedersoo L. Temporal dynamics of ectomycorrhizal fungi and persistence of Tuber melanosporum in inoculated Quercus robur seedlings in North Europe[J]. Mycorrhiza,2015, 25(1):61-66.
[24]杜运付,伍金花,高海健,等.菌根真菌修复重金属污染土壤研究进展[J].农业生物技术学报,2024, 32(7):1681-1692.
[25]王有智,黄亦存.四种外生菌根真菌产生植物激素的研究[J].微生物学通报,1997(2):72-74.
[26] Morrison E N, Knowles S, Hayward A, et al. Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis[J]. Mycologia, 2015, 107(2):245-257.
[27] Bonfante P, Anca I A. Plants, mycorrhizal fungi, and bacteria:a network of interactions[J]. Annual Review of Microbiology, 2009, 63:363-383.
[28] Johansson J F, Paul L R, Finlay R D. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture[J]. FEMS Microbiology Ecology, 2004, 48(1):1-13.
[29] Stephan A, Meyer A H, Schmid B. Plant diversity affects culturable soil bacteria in experimental grassland communities[J]. The Journal of ecology, 2000, 88(6):988-998.
[30] Duponnois R, Kisa M. The possible role of trehalose in the mycorrhiza helper bacterium effect[J]. Canadian Journal of Botany-revue Canadienne de Botanique, 2006, 84(6):1005-1008.
[31]曹雨婷,于水强,邵慧妹,等.不同优势树种菌根类型差异对土壤胞外酶活性的影响[J].生态学报,2023, 43(5):1971-1980.
[32]梅言,戴传超,贾永.外生菌根真菌及其菌根辅助细菌协同解磷的研究进展[J].生态学杂志,2022, 41(8):1619-1627.
[33] Sillo F, Vergine M, Luvisi A, et al. Bacterial communities in the fruiting bodies and background soils of the white truffle Tuber magnatum[J]. Frontiers in Microbiology, 2022, 13:864434.
[34] Li Q, Yan L J, Ye L, et al. Chinese black truffle(Tuber indicum)alters the ectomycorrhizosphere and endoectomycosphere microbiome and metabolic profiles of the host tree Quercus aliena[J]. Frontiers in Microbiology, 2018, 9:2202.
[35] Chen H, Wu J, Liu J, et al. Effects of truffle inoculation on root physiology and mycorrhizosphere microbial communities of Carya illinoinensis seedlings[J]. Forests, 2023, 14(10):2078.
[36] De Miguel A M,águeda B, Sánchez S, et al. Ectomycorrhizal fungus diversity and community structure with natural and cultivated truffle hosts:applying lessons learned to future truffle culture[J]. Mycorrhiza, 2014, 24(S1):5-18.
[37] Belfiori B, Riccioni C, Tempesta S, et al. Comparison of ectomycorrhizal communities in natural and cultivated Tuber melanosporum truffle grounds[J]. FEMS Microbiology Ecology, 2012, 81(3):547-561.
[38] Oliach D, Colinas C, Casta?o C, et al. The influence of forest surroundings on the soil fungal community of black truffle(Tuber melanosporum)plantations[J]. Forest Ecology and Management, 2020, 470:118212.
[39] Pi?uela Y, Alday J G, Oliach D, et al. Habitat is more important than climate for structuring soil fungal communities associated in truffle sites[J]. Fungal Biology, 2024, 128(2):1724-1734.
[40]任丽莹,白玛央宗,丹增晋美,等.西藏黄绿卷毛菇生境土壤微生物群落组成[J].菌物学报,2022, 41(6):906-917.
[41] Koshila Ravi R, Anusuya S, Balachandar M, et al. Microbial Interactions in soil formation and nutrient cycling[M]//Choudhary D K, Varma A, Varma A, et al. Mycorrhizosphere and Pedogenesis. Singapore:Springer Singapore Pte Limited. 2019:363-682.
[42] Barbieri E, Ceccaroli P, Agostini D, et al.Truffle-Associated Bacteria:Extrapolation from diversity to function[M]//Zambonelli A, Iotti M, Murat C. True truffle(Tuber spp)in the World. Cham:Springer International Publishing. 2016:301-317.
[43] Wang Y, Cummings N, Guerin-laguette A. Cultivation of Basidiomycete Edible Ectomycorrhizal Mushrooms:Tricholoma, Lactarius, and Rhizopogon[M]//Zambonelli A, Bonito G M. Edible Ectomycorrhizal Mushrooms. Berlin, Heidelberg:Springer Berlin Heidelberg. 2013:281-304.
[44] Murata H, Nakano S, Yamanaka T, et al. Conversion from mutualism to parasitism:a mutant of the ectomycorrhizal agaricomycete Tricholoma matsutake that induces stunting,wilting, and root degeneration in seedlings of its symbiotic partner, Pinus densiflora, in vitro[J]. Botany, 2019, 97(8):463-674.
[45] Kobayashi Y, Shibata T F, Hirakawa H, et al. The genome of Lyophyllum shimeji provides insight into the initial evolution of ectomycorrhizal fungal genomes[J]. DNA Research,2023, 30(1):53.
[46] Visnovsky S B, Cummings N, Guerin-Laguette A, et al. Detection of the edible ectomycorrhizal fungus Lyophyllum shimeji colonising seedlings of cultivated conifer species in New Zealand[J]. Mycorrhiza, 2014, 24(6):453-463.
[47] Ohta A. Production of fruit-bodies of a mycorrhizal fungus,Lyophyllum shimeji, in pure culture[J]. Mycoscience,1994, 35(2):147-151.
[48] Yamada A. Cultivation studies of edible ectomycorrhizal mushrooms:successful establishment of ectomycorrhizal associations in vitro and efficient production of fruiting bodies[J]. Mycoscience, 2022, 63(6):235-246.
[49] Kumla J, Suwannarach N, Lumyong S. Cultivation of edible tropical bolete, Phlebopus spongiosus, in thailand and yield Improvement by high-voltage pulsed stimulation[J]. Agronomy(Basel), 2022, 12(1):115.
[50]冯云利,桑兰,吴素蕊,等.外生菌根菌研究概况[J].中国食用菌,2013, 32(6):1-3.
[51] Wolfe B E, Tulloss R E, Pringle A. The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis[J]. PLoS One, 2012, 7(7):e39597.
[52] Murat C, Payen T, Noel B, et al. Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle[J].Nature Ecology&Evolution, 2018, 2(12):1956-1965.
[53] Kohler A, Kuo A L, Nagy L G, et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists[J]. Nature Genetics, 2015, 47(4):410-415.
[54] Lindahl B D, Tunlid A. Ectomycorrhizal fungi-potential organic matter decomposers, yet not saprotrophs[J]. The New Phytologist, 2015, 205(4):1443-1447.
[55]余书捷,沈蓉,林敦梅.外生菌根真菌对森林土壤有机质形成和分解的影响研究进展[J].应用生态学报,2025,36(3):943-949.
[56] Martin F, Aerts A, Ahrén D, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis[J]. Nature, 2008, 452(7183):88-92.
[57] Lebreton A, Tang N W, Kuo A L, et al. Comparative genomics reveals a dynamic genome evolution in the ectomycorrhizal milk-cap(Lactarius)mushrooms[J]. The New Phytologist, 2022, 235(1):306-319.
[58] Courty P E, Bréda N, Garbaye J. Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break[J]. Soil Biology and Biochemistry, 2007, 39(7):1655-1663.
[59] Cao Y, Zhang Y, Yu Z F, et al. Genome sequence of Phlebopus portentosus strain PP33, a cultivated bolete[J]. Genome Announcements, 2015, 3(2):e00326-15.
[60] Henney H R, Tavana G. Purification and some properties of an intracellular acid(caryl)proteinase from differentiating haploid cells of Physarum flavicomum[J]. Experimental Mycology, 1982, 6(2):161-170.
[61] Terashita T, Kono M, Yoshikawa K, et al. Productivity of hydrolytic enzymes by mycorrhizal mushrooms[J]. Mycoscience, 1995, 36(2):221-225.
[62] Hur T C, Ka K H, Joo S H, et al. Characteristics of the amylase and its related enzymes produced by ectomycorrhizal fungus Tricholoma matsutake[J]. Mycobiology, 2001, 29(4):183-189.
[63] Vaario L M, Guerin Laguette A, Matsushita N, et al. Saprobic potential of Tricholoma matsutake:growth over pine bark treated with surfactants[J]. Mycorrhiza, 2002, 12(1):1-5.
[64] Vaario L M, Heinonsalo J, Spetz P, et al. The ectomycorrhizal fungus Tricholoma matsutake is a facultative saprotroph in vitro[J]. Mycorrhiza, 2012, 22(6):409-418.
[65] Martin F, Kohler A, Murat C, et al. Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis[J]. Nature, 2010, 464(7291):1033-1038.
[66] Koide R T, Sharda J N, Herr J R, et al. Ectomycorrhizal fungi and the biotrophy-saprotrophy continuum[J]. The New Phytologist, 2008, 178(2):230-233.
[67]吴冰,章小灵,崔宝凯,等.食(药)用真菌比较基因组分析揭示其生态特性[J].菌物学报,2015, 34(4):742-760.
[68] B?deker I T M, Nygren C M R, Taylor A F S, et al. ClassⅡperoxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi[J]. The ISME Journal,2009, 3(12):1387-1395.
[69] Martin F, Kohler A, Murat C, et al. Unearthing the roots of ectomycorrhizal symbioses[J]. Nature Reviews Microbiology, 2016, 14(12):760-773.
[70] Maillard F, Kohler A, Morin E, et al. Functional genomics gives new insights into the ectomycorrhizal degradation of chitin[J]. The New Phytologist, 2023, 238(2):845-858.
[71] Talbot J M, Allison S D, Treseder K K. Decomposers in disguise:mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change[J]. Functional Ecology,2008, 22(6):955-963.
[72] Timonen S, Sen R. Heterogeneity of fungal and plant enzyme expression in intact scots pine-Suillus bovinus and-Paxillus involutus mycorrhizospheres developed in natural forest humus[J]. The New Phytologist, 1998, 138(2):355-366.
[73] Shah F, Nicolás C, Bentzer J, et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors[J]. The New Phytologist, 2016, 209(4):1705-1719.
[74] Talbot J M, Martin F, Kohler A, et al. Functional guild classification predicts the enzymatic role of fungi in litter and soil biogeochemistry[J]. Soil biology&biochemistry, 2015, 88(C):441-456.
[75] Nicolás C, Martin-Bertelsen T, Floudas D, et al. The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen[J]. The ISME Journal, 2019, 13(4):977-988.
[76] Agerer R. Exploration types of ectomycorrhizae-A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance[J]. Mycorrhiza, 2001, 11(2):107-114.
[77] Whitfield J. Fungal roles in soil ecology:underground networking[J]. Nature, 2007, 449(7159):136-138.
[78] Narimatsu M, Koiwa T, Masaki T, et al. Relationship between climate, expansion rate, and fruiting in fairy rings(‘shiro’) of an ectomycorrhizal fungus Tricholoma matsutake in a Pinus densiflora forest[J]. Fungal Ecology,2015, 15:18-28.
[79] Kataoka R, Siddiqui Z A, Kikuchi J, et al. Detecting nonculturable bacteria in the active mycorrhizal zone of the pine mushroom Tricholoma matsutake[J]. Journal of Microbiology, 2012, 50(2):199-206.
[80] Staubli F, Imola L, Dauphin B, et al. Hidden fairy rings and males-Genetic patterns of natural Burgundy truffle(Tuber aestivum Vittad.)populations reveal new insights into its life cycle[J]. Environmental Microbiology, 2022, 24(12):6376-6391.
[81] Oliach D, Casta?o C, Fischer C R, et al. Soil fungal community and mating type development of Tuber melanosporum in a 20-year chronosequence of black truffle plantations[J].Soil Biology and Biochemistry, 2022, 165:108510.
[82] Zampieri E, Murat C, Cagnasso M, et al. Soil analysis reveals the presence of an extended mycelial network in a Tuber magnatum truffle-ground[J]. FEMS Microbiology Ecology, 2010, 71(1):43-49.
[83] Gryndler M, Beskid O, Hr?elováH, et al. Mutabilis in mutabili:Spatiotemporal dynamics of a truffle colony in soil[J].Soil Biology and Biochemistry, 2015, 90:62-70.
[84] Ekblad A, Wallander H, Godbold D L, et al. The production and turnover of extramatrical Mycelium of ectomycorrhizal fungi in forest soils:role in carbon cycling[J]. Plant and Soil, 2013, 366(1):1-27.
[85] Lagrange H, Jay-Allgmand C, Rutin Lapeyrie F, et al. The phenolglycoside from Eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations[J]. The New Phytologist, 2001, 149(2):349-355.
[86] Tarkka M T, Schrey S, Nehls U. The alpha-tubulin gene AmTuba1:a marker for rapid mycelial growth in the ectomycorrhizal basidiomycete Amanita muscaria[J]. Current Genetics, 2006, 49(5):294-301.
[87]文春玉,徐明,张姣,等. 7种外生菌根真菌的生长曲线测定研究[J].中国农学通报,2023, 39(12):35-41.
[88] De la Varga H,águeda B,ágreda T, et al. Seasonal dynamics of Boletus edulis and Lactarius deliciosus extraradical mycelium in pine forests of central Spain[J]. Mycorrhiza,2013, 23(5):391-402.
[89] Suz L M, Martín M P, Oliach D, et al. Mycelial abundance and other factors related to truffle productivity in Tuber melanosporum-Quercus ilex orchards[J]. FEMS Microbiology Letters, 2008, 285(1):72-78.
[90] De la Varga H, Agueda B, Martínez-Pe?a F, et al. Quantification of extraradical soil mycelium and ectomycorrhizas of Boletus edulis in a Scots pine forest with variable sporocarp productivity[J]. Mycorrhiza, 2012, 22(1):59-68.
[91] Queralt M, ParladéJ, Pera J, et al. Seasonal dynamics of extraradical mycelium and mycorrhizas in a black truffle(Tuber melanosporum)plantation[J]. Mycorrhiza, 2017, 27(6):565-576.
[92] Liu B, Bonet J A, Fischer C R, et al. Lactarius deliciosus Fr.soil extraradical mycelium correlates with stand fruitbody productivity and is increased by forest thinning[J]. Forest Ecology and Management, 2016, 380:196-201.
[93] Pritsch K, Garbaye J. Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter[J].Annals of Forest Science, 2011, 68(1):25-32.
[94] Ogawa W, Endo N, Takeda Y, et al. Efficient establishment of pure cultures of yellow chanterelle Cantharellus anzutake from ectomycorrhizal root tips, and morphological characteristics of ectomycorrhizae and cultured mycelium[J]. Mycoscience, 2019, 60(1):45-53.
[95] Ogawa W, Takeda Y, Endo N, et al. Repeated fruiting of Japanese golden chanterelle in pot culture with host seedlings[J]. Mycorrhiza, 2019, 29(5):519-530.
[96] Kusuda M, Ueda M, Miyatake K, et al. Effects of carbohydrate substrate on the vegetative mycelial growth of an ectomycorrhizal mushroom, Tricholoma matsutake, isolated from Quercus[J]. Mycoscience, 2007, 48(6):358-364.
[97] Yamada A, Katsuya K. Mycorrhizal association of isolates from sporocarps and ectomycorrhizas with Pinus densiflora seedlings[J]. Mycoscience, 1995, 36(3):315-323.
[98] Sehgal A K, Sagar A. Aseptic in vitro synthesis of Pinus gerardiana ectomycorrhizae with Amanita ceciliae and Lactarius sanguifluus[J]. Biosciences, biotechnology research Asia, 2023, 20(4):1355-1363.
[99] Arai Y, Takao M, Sakamoto R, et al. Promotive effect of the hot water-soluble fraction from corn fiber on vegetative mycelial growth in edible mushrooms[J]. Journal of Wood Science, 2003, 49(5):437-443.
[100] Lee W H, Han S K, Kim B S, et al. Proliferation of Tricholoma matsutake mycelial mats in pine forest using mass liquid inoculum[J]. Mycobiology, 2007, 35(2):54-61.
[101] Wang Y, Zhang Y, Wang L, et al. 9 Studies on the optimization of submerged fermentation medium and conditions for Tricholoma matsutake[J]. Journal of investigative medicine, 2016, 64(S8):A3.
[102] Oh S Y, Lim Y W. Root-associated bacteria influencing mycelial growth of Tricholoma matsutake(pine mushroom)[J]. Journal of Microbiology, 2018, 56(6):399-407.
[103] Oh S Y, Kim M, Eimes J A, et al. Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds[J]. PLoS One, 2018, 13(2):e0190948.
[104] Choi D H, Han J G, Lee K H, et al. Promotion of Tricholoma matsutake mycelium growth by Penicillium citreonigrum[J]. Mycobiology, 2023, 51(5):354-359.
[105] Tasaki T, Kondo R. Zn2+, a key factor of colony morphogenesis of Tricholoma matsutake[J]. Journal of Wood Science,2016, 62(5):460-471.
[106] Nakano S, Kinoshita A, Obase K, et al. Influence of pH on in vitro mycelial growth in three Japanese truffle species:Tuber japonicum, T. himalayense, and T. longispinosum[J]. Mycoscience, 2020, 61(2):58-61.
[107] Nakano S, Kinoshita A, Obase K, et al. Physiological characteristics of pure cultures of a white-colored truffle Tuber japonicum[J]. Mycoscience, 2022, 63(2):53-57.
[108] Arenas F, Navarro-Ródenas A, Chávez D, et al. Mycelium of Terfezia claveryi as inoculum source to produce desert truffle mycorrhizal plants[J]. Mycorrhiza, 2018, 28(7):691-701.
[109] Giorgi V, Amicucci A, Landi L, et al. Effect of bacteria inoculation on colonization of roots by Tuber melanosporum and growth of Quercus ilex seedlings[J]. Plants, 2024, 13(2):224.
[110] Kibar B, Peksen A. Mycelial growth requirements of Lactarius pyrogalus and Lactarius controversus[J]. African Journal of Microbiology Research, 2011, 5(28):5107-5114.
[111]王冉,Alexis Guerin-Laguette,于富强.两种乳菇菌丝生长的最适培养基与菌根合成[J].菌物学报,2020, 39(7):1346-1355.
[112]冯慧,王迪,崔宝凯,等.松乳菇菌丝生长促生细菌的筛选与鉴定[J].西南农业学报,2024, 37(7):1531-1537.
[113] Ogawa M, UmeharA T, Kontani S, et al. Cultivating method of the mycorrhizal fungus, Tricholoma matsutake(ITO et IMAI)SING.(Ⅰ):Growing method of the pine saplings infected with T. matsutake in the field[J]. Journal of The Japanese Forestry Society, 1978, 60(4):119-128.
[114] Murat C. Forty years of inoculating seedlings with truffle fungi:past and future perspectives[J]. Mycorrhiza, 2015, 25(1):77-81.
[115] Horimai Y, Misawa H, Suzuki K, et al. Spore germination and ectomycorrhizae formation of Tricholoma matsutake on pine root systems with previously established ectomycorrhizae from a dikaryotic mycelial isolate of T. matsutake[J].Mycorrhiza, 2021, 31(3):335-347.
[116] Iotti M, Piattoni F, Leonardi P, et al. First evidence for truffle production from plants inoculated with mycelial pure cultures[J]. Mycorrhiza, 2016, 26(7):793-798.
[117] Wang R, Guerin-laguette A, Huang L L, et al. Mycorrhizal syntheses between Lactarius spp. section Deliciosi and Pinus spp. and the effects of grazing insects in Yunnan, China[J].Canadian journal of forest research, 2019, 49(6):616-627.
[118] Nara K. Spores of ectomycorrhizal fungi:ecological strategies for germination and dormancy[J]. The New Phytologist, 2009, 181(2):245-248.
[119] Fries N, Serck-Hanssen K, Dimberg L H, et al. Abietic acid, and activator of basidiospore germination in ectomycorrhizal species of the genus Suillus(Boletaceae)[J]. Experimental Mycology, 1987, 11(4):360-363.
[120] Vayssières A, Pěn?ík A, Felten J, et al. Development of the poplar-Laccaria bicolor ectomycorrhiza modifies root auxin metabolism, signaling, and response[J]. Plant Physiology, 2015, 169(1):890-902.
[121] Martin F, Kohler A, Murat C, et al. Unearthing the roots of ectomycorrhizal symbioses[J]. Nature Reviews Microbiology, 2016, 14(12):760-773.
[122] Spatafora J W, Aime M C, Grigoriev I V, et al. The fungal tree of life:from molecular systematics to genome-scale phylogenies[J]. Microbiology Spectrum, 2017,5(5).DOI:10.1128/microbiolspec.FUNK-0053-2016.
[123] Tedersoo L, May T W, Smith M E. Ectomycorrhizal lifestyle in fungi:global diversity, distribution, and evolution of phylogenetic lineages[J]. Mycorrhiza, 2010, 20(4):217-263.
[124] Moeller H V, Neubert M G. Multiple friends with benefits:an optimal mutualist management strategy?[J]. The American Naturalist, 2016, 187(1):1-12.
[125] Yamanaka T, Yamada A, Furukawa H. Advances in the cultivation of the highly-prized ectomycorrhizal mushroom Tricholoma matsutake[J]. Mycoscience, 2020, 61(2):49-57.
[126] Murata H, Yamada A, Maruyama T, et al. Ectomycorrhizas in vitro between Tricholoma matsutake, a basidiomycete that associates with Pinaceae, and Betula platyphylla var.japonica, an early-successional birch species, in cool-temperate forests[J]. Mycorrhiza, 2015, 25(3):237-241.
[127] Oh S Y, Lim Y W. Effect of fairy ring bacteria on the growth of Tricholoma matsutake in vitro culture[J]. Mycorrhiza, 2018, 28(5/6):411-419.
[128] Hortal S, Plett K L, Plett J M, et al. Role of plant-fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi[J]. The ISME Journal, 2017, 11(12):2666-2676.
[129]黄兰兰,万山平,汪延良,等.八种外生菌根菌与黑松菌根合成及其特征[J].食用菌学报,2022, 29(4):98-106.
[130]王迪,HALLIan Robert,何晓兰,等.人工合成松乳菇菌根及杂菌侵染宿主的形态学观察和分子鉴定[J].食用菌学报,2021, 28(3):129-134.
[131] Yamanaka T, Ota Y, Konno M, et al. The host ranges of conifer-associated Tricholoma matsutake, Fagaceae-associated T. bakamatsutake and T. fulvocastaneum are wider in vitro than in nature[J]. Mycologia, 2014, 106(3):397-406.
[132]张珍明,张家春,何云松,等.马尾松外生菌根真菌研究进展[J].耕作与栽培,2016(2):66-68, 72.
[133] Endo N, Kawamura F, Kitahara R, et al. Synthesis of Japanese Boletus edulis ectomycorrhizae with Japanese red pine[J]. Mycoscience, 2014, 55(5):405-416.
[134] Saito C, Ogawa W, Kobayashi H, et al. In vitro ectomycorrhization of Tricholoma matsutake strains is differentially affected by soil type[J]. Mycoscience, 2018, 59(1):89-97.
[135] Endo N, Gisusi S, Fukuda M, et al. In vitro mycorrhization and acclimatization of Amanita caesareoides and its relatives on Pinus densiflora[J]. Mycorrhiza,2013,23(4):303-315.
[136] Fangfuk W, Okada K, Fukuda M, et al. In vitro mycorrhization of edible Astraeus mushrooms and their morphological characterization[J]. Mycoscience, 2010, 51(3):234-241.
[137] Horimai Y, Misawa H, Suzuki K, et al. Sibling spore isolates of Tricholoma matsutake vary significantly in their ectomycorrhizal colonization abilities on pine hosts in vitro and form multiple intimate associations in single ectomycorrhizal roots[J]. Fungal Ecology, 2020, 43:100874.
[138] Gomes F, Suárez D, Santos R, et al. Mycorrhizal synthesis between Lactarius deliciosus and Arbutus unedo L[J]. Mycorrhiza, 2016, 26(3):177-188.
[139] ParladéJ, Pera J, Luque J. Evaluation of mycelial inocula of edible Lactarius species for the production of Pinus pinaster and P. sylvestris mycorrhizal seedlings under greenhouse conditions[J]. Mycorrhiza, 2004, 14(3):171-176.
[140] Guerin-Laguette A, Vaario L M, Matsushita N, et al.Growth stimulation of a Shiro-like, mycorrhiza forming, mycelium of Tricholoma matsutake on solid substrates by non-ionic surfactants or vegetable oil[J]. Mycological Progress, 2003, 2(1):37-43.
[141] Díaz G, Carrillo C, Honrubia M. Production of Pinus halepensis seedlings inoculated with the edible fungus Lactarius deliciosus under nursery conditions[J]. New forests,2009, 38(2):215-27.
[142]毕国昌,臧穆,郭秀珍.滇西北高山针叶林区主要林型下外生菌根真菌的分布[J].林业科学,1989(1):33-39.
[143] Paolocci F, Rubini A, Riccioni C, et al. Reevaluation of the life cycle of Tuber magnatum[J]. Applied and Environmental Microbiology, 2006, 72(4):2390-2393.
[144] Riccioni C, Belfiori B, Rubini A, et al. Tuber melanosporum outcrosses:analysis of the genetic diversity within and among its natural populations under this new scenario[J].The New Phytologist, 2008, 180(2):466-478.
[145] Rubini A, Belfiori B, Riccioni C, et al. Isolation and characterization of MAT genes in the symbiotic ascomycete Tuber melanosporum[J]. The New Phytologist, 2011, 189(3):710-722.
[146] Linde C C, Selmes H. Genetic diversity and mating type distribution of Tuber melanosporum and their significance to truffle cultivation in artificially planted truffieres in Australia[J]. Applied and Environmental Microbiology, 2012, 78(18):6534-6539.
[147] Yun W, Hall I R. Edible ectomycorrhizal mushrooms:challenges and achievements[J]. Canadian journal of botany,2004, 82(8):1063-1073.
[148] Yamada A, Kobayashi H, Ogura T, et al. Sustainable fruitbody formation of edible mycorrhizal Tricholoma species for3 years in open pot culture with pine seedling hosts[J]. Mycoscience, 2007, 48(2):104-108.
[149] Zhang J, Zhao Y, He H, et al. Extracellular enzyme activity and nutrient characteristics of Pinus massoniana Lamb.families with different growth levels:insights into the ectomycorrhizal fungal community and rhizosphere soil[J]. Forests, 2023, 14(7):1447.
[150] Plett K L, Singan V R, Wang M, et al. Inorganic nitrogen availability alters Eucalyptus grandis receptivity to the ectomycorrhizal fungus Pisolithus albus but not symbiotic nitrogen transfer[J]. The New Phytologist, 2020, 226(1):221-231.
[151] Verrecchia E P, Braissant O, Cailleau G. The oxalate-carbonate pathway in soil carbon storage:the role of fungi and oxalotrophic bacteria[M]//GADD G M. Fungi in Biogeochemical Cycles. Cambridge:Cambridge University Press.2006:289-310.
[152] Wang X N, Qu L Y, Mao Q Z, et al. Ectomycorrhizal colonization and growth of the hybrid larch F1 under elevated CO2and O3[J]. Environmental Pollution, 2015, 197:116-126.
[153]张健.珍贵菌根食用菌的半人工栽培研究进展[J].农业与技术,2014, 34(5):146.
[154] Bonet J A, de-Miguel S, Martínez de Aragón J, et al. Immediate effect of thinning on the yield of Lactarius group deliciosus in Pinus pinaster forests in Northeastern Spain[J].Forest Ecology and Management, 2012, 265:211-217.
[155] Martínez-Pe?a F, de-Miguel S, Pukkala T, et al. Yield models for ectomycorrhizal mushrooms in Pinus sylvestris forests with special focus on Boletus edulis and Lactarius group deliciosus[J]. Forest Ecology and Management,2012, 282:63-69.
[156] Harvey A E, Larsen M J, Jurgensen M F. Distribution of ectomycorrhizae in a mature Douglas-fir/larch forest soil in western Montana[J]. Forest Science, 1976, 22(4):393-398.
[157] Fujita H, Kobayashi F, Fujita T, et al. Expansion process of ‘Shiro’ of Tricholoma matsutake at the Kyotamba-cho test site[J]. Journal of the Japanese Forest Society, 2021,103(2):156-160.
[158]赵永昌,柴红梅,李树红,等.掘塘技术对干巴菌菌塘数量和产量的影响[J].西南农业学报,2005, 18(6):829-831.
[159]吴久春,孙学广,冯万艳.菌根食用菌培育研究进展[J].世界林业研究,2023, 36(4):42-46.
[160] Pi?uela Y, Alday J G, Oliach D, et al. White mulch and irrigation increase black truffle soil mycelium when competing with summer truffle in young truffle orchards[J]. Mycorrhiza, 2021, 31(3):371-382.
[161] Guerin-Laguette A, Cummings N, Butler R C, et al. Lactarius deliciosus and Pinus radiata in New Zealand:towards the development of innovative gourmet mushroom orchards[J]. Mycorrhiza, 2014, 24(7):511-523.
[162]李月蛟,朱利英,尹华军,等.连续三年夜间增温和施氮对云杉外生菌根及菌根真菌多样性的影响[J].生态学报,2015, 35(9):2967-2977.
[163]俞嘉瑞,袁海生.外生菌根真菌的共生互作和宿主选择机制研究进展[J].菌物学报,2023, 42(1):86-100.
[164] Furtado A N M, de Farias S T, dos Santos Maia M. Structural analyzes suggest that MiSSP13 and MiSSP16.5 may act as proteases inhibitors during ectomycorrhiza establishment in Laccaria bicolor[J]. BioSystems, 2024, 238:105194.
[165] Melin E, Das V S R. Influence of Root-Metabolites on the growth of tree mycorrhizal fungi[J]. Physiologia Plantarum, 1954, 7(4):6.
[166] Horan D P, Chilvers G A. Chemotropism-the key to ectomycorrhizal formation[J]. New Phytologist, 1990, 116(2):297-301.
[167] Pellegrin C, Martin F, Veneault-fourrey C. Molecular signalling during the ectomycorrhizal symbiosis[M]//Hoffmeister d, Gressler M. Biology of the Fungal Cell. Cham:Springer International Publishing. 2019:95-109.
[168]冯万艳,孙学广,丁贵杰.外生菌根预共生阶段信号识别机制研究进展[J].植物生理学报,2021,57(4):749-758.
[169] Fries N, Bardet M, Serck-Hanssen K. Growth of ectomycorrhizal fungi stimulated by lipids from a pine root exudate[J]. Plant and Soil, 1985, 86(2):287-290.
[170] Nair M G, Safir G R, Siqueira J O. Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover(Trifolium repens)roots[J]. Applied and Environmental Microbiology, 1991, 57(2):434-439.
[171] Splivallo R, Fischer U, G?bel C, et al. Truffles regulate plant root morphogenesis via the production of auxin and ethylene[J]. Plant Physiology, 2009, 150(4):2018-2029.
[172] Felten J, Kohler A, Morin E, et al. The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling[J]. Plant Physiology, 2009, 151(4):1991-2005.
[173] Felten J, LeguéV, Ditengou F A. Lateral root stimulation in the early interaction between Arabidopsis thaliana and the ectomycorrhizal fungus Laccaria bicolor:is fungal auxin the trigger?[J]. Plant Signaling&Behavior, 2010, 5(7):864-867.
[174] Ditengou F A, Müller A, Rosenkranz M, et al. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture[J]. Nature Communications,2015, 6:6279.
[175] Regvar M, Gogala N,?nidar?i?N. Jasmonic acid affects mycorrhization of spruce seedlings with Laccaria laccata[J]. Trees, 1997, 11(8):511-514.
[176] Béguiristain T, Lapeyrie F. Host plant stimulates hypaphorine accumulation in Pisolithus tinctorius hyphae during ectomycorrhizal infection while excreted fungal hypaphorine controls root hair development[J]. The New Phytologist,1997, 136(3):525-532.
[177] Cope K R, Bascaules A, Irving T B, et al. The ectomycorrhizal fungus Laccaria bicolor produces lipochitooligosaccharides and uses the common symbiosis pathway to colonize Populus roots[J]. The Plant Cell, 2019, 31(10):2386-2410.
[178] Turgeman T, Kagan-zu V, Sitrit Y, et al. Pre-symbiotic interactions between the desert truffle Terfezia boudieri and its host plant Helianthemum sessiliflorum[J]. Soil Biology,2014,38:81-92.
[179] Zaretsky M, Sitrit Y, Mills D, et al. Differential expression of fungal genes at preinfection and mycorrhiza establishment between Terfezia boudieri isolates and Cistus incanus hairy root clones[J]. The New Phytologist, 2006, 171(4):837-845.
[180] Ditengou F A, Béguiristain T, Lapeyrie F. Root hair elongation is inhibited by hypaphorine, the indole alkaloid from the ectomycorrhizal fungus Pisolithus tinctorius, and restored by indole-3-acetic acid[J]. Planta, 2000, 211(5):722-728.
[181] Krause K, Henke C, Asiimwe T, et al. Biosynthesis and secretion of indole-3-acetic acid and its morphological effects on Tricholoma vaccinum-spruce ectomycorrhiza[J]. Applied and Environmental Microbiology, 2015, 81(20):7003-7011.
[182] Vayssières A, Pěn?ík A, Felten J, et al. Development of the poplar-Laccaria bicolor ectomycorrhiza modifies root auxin metabolism, signaling, and response[J]. Plant Physiology, 2015, 169(1):890-902.
[183] Plett J M, Khachane A, Ouassou M, et al. Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots[J].The New Phytologist, 2014, 202(1):270-286.
[184] Plett J M, Kemppainen M, Kale S D, et al. A secreted effector protein of Laccaria bicolor is required for symbiosis development[J]. Current Biology, 2011, 21(14):1197-1203.
[185] Plett J M, Daguerre Y, Wittulsky S, et al. Effector MiSSP7of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid(JA)responsive genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(22):8299-8304.
[186] Daguerre Y, Plett J M, Veneault-fourrey C. Signaling pathways driving the development of ectomycorrhizal symbiosis[J]. Molecular Mycorrhizal Symbiosis, 2016:141-157.
[187] Plett J M, Martin F. Poplar root exudates contain compounds that induce the expression of MiSSP7 in Laccaria bicolor[J]. Plant Signaling&Behavior, 2012, 7(1):12-15.
[188] Kang H, Chen X, Kemppainen M, et al. The small secreted effector protein MiSSP7.6 of Laccaria bicolor is required for the establishment of ectomycorrhizal symbiosis[J]. Environmental Microbiology, 2020, 22(4):1435-1446.
[189] Sakamoto Y, Sato S, Takizawa M, et al. Identification of upregulated genes in Tricholoma matsutake mycorrhiza[J].FEMS Microbiology Letters, 2022, 369(1):85.
[190] Tang N W, Lebreton A, Xu W J, et al. Transcriptome profiling reveals differential gene expression of secreted proteases and highly specific gene repertoires involved in Lactarius-Pinus symbioses[J]. Frontiers in Plant Science,2021, 12:714393.
[191] Liu Y C, Hu H P, Cai M J, et al. Whole genome sequencing of an edible and medicinal mushroom, Russula griseocarnosa, and its association with mycorrhizal characteristics[J]. Gene, 2022, 808:145996.
[192] Liu Y, Yong T, Cai M, et al. Exploring the potential of Russula griseocarnosa:a molecular ecology perspective[J].Agriculture(Basel), 2024, 14(6):879.
[193] DoréJ, Marmeisse R, Combier J P, et al. A fungal conserved gene from the basidiomycete Hebeloma cylindrosporum is essential for efficient ectomycorrhiza formation[J]. Molecular Plant-Microbe Interactions, 2014, 27(10):1059-1069.
[194] Murata H, Nakano S, Yamanaka T, et al. Argon-ion beam induced mutants of the ectomycorrhizal agaricomycete Tricholoma matsutake defective in β-1,4-endoglucanase activity promote the seedling growth of Pinus densiflora in vitro[J]. Botany, 2021, 99(3):139-49.
[195] Veneault-Fourrey C, Commun C, Kohler A, et al. Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment[J]. Fungal Genetics and Biology,2014, 72:168-181.
[196] de Freitas Pereira M, Betancourth B M L, Teixeira J A, et al. In vitro Scleroderma laeve and Eucalyptus grandis mycorrhization and analysis of atp6, 17S rDNA, and ras gene expression during ectomycorrhizal formation[J]. Journal of Basic Microbiology, 2014, 54(12):1358-1366.
[197] Min B, Yoon H, Park J, et al. Unusual genome expansion and transcription suppression in ectomycorrhizal Tricholoma matsutake by insertions of transposable elements[J].PLoS One, 2020, 15(1):e0227923.
[198] Kurokochi H, Tajima N, Sato M P, et al. Telomere-to-telomere genome assembly of matsutake(Tricholoma matsutake)[J]. DNA Research, 2023, 30(3):6.
[199]周陈力,郭婷,纪光燕,等.基于基因组和转录组挖掘暗褐网柄牛肝菌转录因子以及漆酶表达调控因子[J].北方园艺,2023(16):108-116.
[200]罗顺珍,曹旸,果花,等.暗褐网柄牛肝菌子实体不同生长阶段中小分子碳水化合物变化规律的研究[J/OL].菌物学报,1-20[2024-11-07].https://doi.org/10.13346/j.mycosystema.240155.
[201]杨晓敏,崔凤仙,詹晓坤,等.代谢组分析亚洲兰茂牛肝菌原基发育的潜在调控物质[J].菌物学报,2023, 42(5):1185-1202.
基本信息:
DOI:10.13341/j.jfr.2024.1822
中图分类号:S646
引用信息:
[1]彭卫红,王迪,周洁等.外生菌根食用菌驯化栽培技术研究进展[J].菌物研究,2025,23(03):175-189+172.DOI:10.13341/j.jfr.2024.1822.
基金信息:
四川省食用菌育种攻关项目(2021YFYZ0026); 四川食用菌创新团队项目(SYJCXTD-2024-07); 四川省育种联合攻关项目(2023YZ001); 农业重大技术协同推广项目[N(2024)-2101]